IMAGE

⁶⁸Ga-DOTA TOC uptake in cervicothoracic ganglia: normal variant and incidental finding

Sharjeel Usmani^{1*}, Anjali Jain¹, Khulood Al Riyami¹, Sofiullah Abubakar¹, Asiya Al Busaidi¹

Pakistan Journal of Nuclear Medicine

Volume 13(1):40–41 https://doi.org/10.24911/PJNMed.175-1682840285

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: https://creativecommons.org/licenses/by/4.0/) which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s) 2023

Pakistan Journal of Nuclear Medicine is the official journal of Pakistan Society of Nuclear Medicine

Keywords: ⁶⁸Ga-DOTA TOC PET/CT, neuroendocrine tumors, somatostatin receptors, stellate ganglia.

Received: 30 April 2023 Revised: XXXX Accepted: 27 September 2023

Address for correspondence: Sharjeel Usmani

*Department of Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Muscat, Oman. Email: dr_shajji@yahoo.com

Full list of author information is available at the end of the article.

A 32-year-old female is a known case of rectal neuroendocrine tumor underwent surgical resection nine months back. Recently presented with abdominal pain and palpitation and referred for ⁶⁸Ga-DOTA TOC PET/CT for restaging. ⁶⁸Ga-DOTA TOC images showed increased tracer uptake in the bilateral stellate ganglia (Figure 1).

Somatostatin receptor scintigraphy with ⁶⁸Ga DOTA peptide PET is an established modality for imaging well-differentiated neuroendocrine tumors [1]. These peptides exhibit affinity to various somatostatin receptor subtypes. There are five known subtypes of somatostatin receptors (SSTRs) on cell surfaces, SSTR 1 to SSTR 5. The neuroendocrine tumors have a high affinity to SSTR2 [2]. ⁶⁸Ga DOTA peptide PET imaging is a very specific method, but it can accumulate in benign bone disease, inflammatory and granulomatous diseases, such as tuberculosis, sarcoidosis, or rheumatoid arthritis, as activated macrophages and lymphocytes express somatostatin receptors on their surface [3].

The stellate ganglion is also called a cervicothoracic ganglion and is formed by the fusion of the inferior cervical and superior thoracic sympathetic ganglion. It is located at the level of the C7 vertebra, anterior to the transverse process of the C7 vertebra and neck of the 1st rib, superior to the cervical pleura just below the subclavian artery. It is a long flat structure, and the shape is star-shaped (as referred to in its name stellate) due to the array of branches that diverge from the structure. Studies have shown the somatostatin receptor expression in the cervicothoracic (stellate) ganglia and has been reported in some studies [4]. The exact mechanism for their uptake is not yet fully understood, but it is believed to be related to the presence of somatostatin receptors on the ganglion cells. Somatostatin receptors are known to be expressed

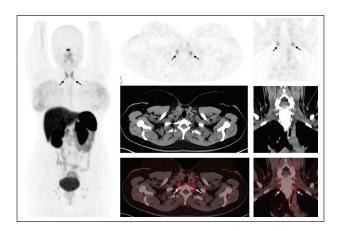


Figure 1. 68 Ga-DOTA TOC Maximum intensity projection (MIP) shows a bilateral increase in tracer uptake at the level of the cervicothoracic junction (black arrow). Cross-sectional PET/CT images confirm this focal uptake within a well-defined soft tissue density identified on the CT image at the level of cervicothoracic junction within the stellate ganglion with increased tracer uptake on fused images (white arrows). The note is made of a mild increase in tracer uptake in the prominent bilateral inguinal lymph nodes; likely inflammatory. No evidence of somatostatin avid disease.

in various tissues, including nerves, and their expression in ganglia has been reported. Readers should be aware of this normal physiologic uptake within the stellate ganglia and should not be misinterpreted as pathologic lymph nodes and further investigations in this regard may not be necessary.

List of Abbreviations

CT Computed tomography
PET Positron emission tomography

Conflict of interest

The authors declare no conflict of interest.

Funding

None.

Consent to participate

Not applicable.

Consent of ethics

Not applicable.

Ethical approval

Not applicable.

Author details

Sharjeel Usmani¹, Anjali Jain¹, Khulood Al Riyami¹, Sofiullah Abubakar¹, Asiya Al Busaidi¹

 Department of Nuclear Medicine, Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Muscat, Oman

References

- Ambrosini V, Nanni C, Fanti S. The use of gallium-68 labeled somatostatin receptors in PET/CT imaging. PET Clin. 2014;9:323–29. https://doi.org/10.1016/j. cpet.2014.03.008
- Hofman MS, Eddie Lau WF, Hicks RJ. Somatostatin receptor imaging with 68Ga DOTATATE PET/CT: clinical utility, normal patterns, pearls, and pitfalls in interpretation. Radiographics. 2015;35:500–16. https://doi. org/10.1148/rg.352140164
- Vanhagen PM, Krenning EP, Reubi JC, Kwekkeboom DJ, Bakker WH, Mulder AH, et al. Somatostatin analogue scintigraphy in granulomatous diseases. Eur J Nucl Med. 1994;21:497Y502. https://doi.org/10.1007/BF00173035
- Berg Z, Koppula BR. 68Ga-DOTATATE uptake by cervicothoracic (stellate) ganglia. Clin Nucl Med. 2019;44:810– 11. https://doi.org/10.1097/RLU.0000000000002731