ORIGINAL ARTICLE

Estimation of net percent error in radioiodine-131 activity during administration to patients

Javaid Ali^{1*}, Shoab Shah², Abdul Samad¹, Imadullah Tariq¹, Ghufran Biradar², Muhammad Sohail³, Irum Naz¹, Attia Gul⁴, Riffat Wadho¹, Israr Ahmad¹

Pakistan Journal of Nuclear Medicine

Volume 13(1):20–23 https://doi.org/10.24911/PJNMed.175-1692263460

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: https://creativecommons.org/licenses/by/4.0/) which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s) 2023

Pakistan Journal of Nuclear Medicine is the official journal of Pakistan Society of Nuclear Medicine

ABSTRACT

Background: Radiation workers have reported that some errors during the measurement of radioiodine-131 (RAI-131) activities have been observed, which may result in poor quality images, greater radioactive waste, and financial burden in the hospital. The purpose of this retrospective study was to estimate the net percent errors in RAI-131 activities during administration to thyroid patients and give some fruitful suggestions to reduce such errors.

Methods: We included 180 random patients, i.e., thirty for each advised activity of 3 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi, and 150 mCi in this study from January 2019 to June 2022. All the recommended activities were measured with a CRC-25R dose calibrator. The percent difference between measured and prescribed activities and the percent difference between measured and residual activities were estimated. Finally, net percent errors in administered activities were measured for all patients.

Results: The net percent error in recommended activities of 3 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi, and 150 mCi and administered activities were $[6.73 (-32.7, 20.95) \pm 11.15] \%$, $[3.91 (-3.85, 8.77) \pm 2.94] \%$, $[3.63 (-2.39, 7.79) \pm 2.51] \%$, $[3.55 (-0.65, 10.67) \pm 2.6] \%$, $[2.93 (-1.98, 6.78) \pm 1.89] \%$, and $[0.88 (-1.04, 2.68) \pm 0.87] \%$, respectively.

Conclusion: This study concludes that patients receive approximately 6.73%, 3.91%, 3.63%, 3.55%, 2.93%, and 0.88% less activities than the aforementioned activities, respectively. The net percent error in RAI-131 activities is not alarming but needs to be adjusted to ensure high-quality images and optimum dose delivery.

Accepted: 05 October 2023

Keywords: Radioiodine-131, residual activity, thyroid disorder, thyroid carcinoma.

Received: 17 August 2023 Revised: XXXX

Address for correspondence: Javaid Ali

*Sr. Scientist, Larkana Institute of Nuclear Medicine & Radiotherapy (LINAR) cancer hospital, Larkana, Sindh, Pakistan Email: javaidalitarakai@gmail.com; javid.tarakai@yahoo.com

Full list of author information is available at the end of the article.

Introduction

Radioiodine-131 (RAI-131) is a neutron-rich radionuclide and it is used for the management of thyroid disorders, i.e., hyrotoxicosis, toxic nodular disease and thyroid cancer [1-4], and thyroid diagnostic procedures [5]. It is clinically very efficient, secure, and cost-effective in contrast with other therapeutic options [5]. RAI-131 has a physical half-life of 8.02 days [1,6,7]. It decays to the stable isotope Xe-131 after emission of beta particles and gamma radiations [1,2]. The principal gamma rays have an energy of 364 keV and the principal beta particles have a maximum energy of 0.61 MeV with a mean energy of 0.192 MeV [6]. Therefore, the gamma-rays having energy 364 keV (81.7%) are useful for scintigraphy imaging, but for therapeutic purpose the beta particles are important due to their local deposition in the soft tissues with an average range of 4 mm in the soft tissues [1,7,8]. The

accurate measurement of RAI-131 is very important [9], as it affects the treatment and quality of scan. Therefore, uncertainty due to any reason in RAI-131 activities during administration to thyroid patients should be estimated and minimized. Analogous studies have been performed by many authors regarding residual activities of Tc-99m/ Tc-99m labeled radiopharmaceuticals and other radionuclides in syringes/vials [10-15]. However, in the present study, uncertainty in RAI-131 measured activities, residual activities, and net uncertainties are estimated after oral administration to the patients and such study has not been performed yet to best of my knowledge. Although radiation workers have reported that some RAI-131 activities remain in the syringes [10]. It is worthy to mention that some uncertainties during measurement of RAI-131 activities have also been observed. These originate errors in RAI-131 activities during administration to the patients, which may result in degradation of the quality of images, greater radioactive waste and high financial burden. The purpose of this study is to estimate the net percent errors in RAI-131 activities during administration to thyroid patients and give some fruitful suggestions to reduce such errors.

Methods and Materials

This retrospective study was performed from January 2019 to June 2022 for a total number of 180 random patients, divided into six groups (from A-F) on the basis of administered activities. The administered activities were 3 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi, and 150 mCi and named as group-A, group-B, group-C, group-D, group-E, and group-F, respectively. All activities were measured with Capintech inc., CRC-25R dose calibrator. The percent errors (E_1) in measured activities were estimated for all thyroid patients by Equation (1) [16]. The percent residual activities (E_2) in empty syringes after administration of RAI-131 to the patients were also measured with the same dose calibrator by using Equation (2). Finally, the net percent error (E_{Net}) in prescribed activity of RAI-131 to the patients was measured using Equation (3).

$$E_1 = \frac{\text{AV-MV}}{\text{A.V}} \times 100\% \tag{1}$$

In the above Equation (1), AV is the actual value of RAI-131 activity (prescribed activity) and MV is the measured value of RAI-131 activity (measured by a technician using Capintech CRC-25R dose calibrator).

$$E_2 = \frac{\text{Empty syringe reading}}{\text{Full syringe reading}} \times 100\%$$
 (2)

In Equation (2), E_2 is the percent residual activities in empty syringes after administration of RAI-131 to the patients.

$$E_{\text{Net}} = E_1 + E_2 \tag{3}$$

In Equation (3), $E_{\rm Net}$ is the net percent errors in RAI-131 activities administered to all thyroid patients. Mean measured activities, mean percent errors in measured values, mean remaining activities in syringes, percent remaining activities, and mean net percent errors in RAI-131 activities for all patients were calculated and statistically analyzed by using Microsoft Excel 2010.

Results and Discussion

The percent errors in measured values (E_1) , percent residual activities (E_2) , and net percent errors (E_{Net}) in RAI-131 for all patients are shown in the following Table 1.

From the above table, it is clear that the mean measured activities were 3.05 (2.67, 4.12) mCi, 15.1 (14.1, 16) mCi, 20.08 (19, 21) mCi, 25.19 (24, 26.1) mCi, 29.9 (28.9, 31) mCi, and 150.08 (148, 152) mCi for prescribed activities of 3 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi, and 150 mCi, respectively. The mean percent errors with ranges in the measurements along with standard deviations were $[-1.63 (-37.33, 11) \pm 9.58]$ %, $[-0.69 (-6.69, 6) \pm 2.73]$ %, $[-0.41 (-5, 5) \pm 2.46]$ %, $[-0.76 (-4.4, 4) \pm 2.11]$ %, [0.33] $(-3.33, 3.67) \pm 1.83 \pm 0.77$ %, and [-0.054 (-1.33, 1.33)]%, respectively. The corresponding mean values of percent residual activities with ranges along with SDs in the empty syringe after the administration to the patients were $[8.36 (1.52, 14.29) \pm 3.22]$ %, $[4.6 (1.6, 8.5) \pm 2.22]$ %, $[4.05 (1.21, 7.29) \pm 1.50]$ %, $[4.31 (1.39, 7.17) \pm 1.69]$ %, $[2.6 (0.77, 4.67) \pm 1.08]$ %, and $[0.93 (0.16, 2.12) \pm 0.52]$ %. The corresponding net percent errors with ranges and SDs in recommended activities were [6.73 (-32.7, 20.95) \pm 11.15] %, [3.91 (-3.85, 8.77) \pm 2.94] %, [3.63 (-2.39, 7.79) ± 2.51] %, [3.55 (-0.65, 10.67) ± 2.6] %, [2.93 $(-1.98, 6.78) \pm 1.89$ %, and $[0.88 (-1.04, 2.68) \pm 0.87]$ %, respectively, as shown in the Figure 1.

All the results revealed that the net percent errors in RAI-131 activities are not alarming in our setup as according to European pharmaceutical guidelines the acceptable limit for radioactivity measurement is $\pm 10\%$

Table 1. Recommended actual activities, mean measured activities, mean percent errors in measured values, mean remaining activities in syringes, percent remaining activities, and mean net percent errors in RAI-131 activities for all patients.

Group #	Actual activity (mCi)	Mean measured activity (mCi)	Mean %error in measurement (<i>E</i> ₁)	Mean remaining activity in syringe (mCi)	Percent remaining activity (E ₂)	Mean net % error (E _{Net})
Group-A	03	3.05 (2.67, 4.12)	-1.63 (-37.33, 11)	0.25 (0.05, 0.4)	8.36 (1.52,14.29)	6.73 (-32.7, 20.95)
Group-B	15	15.1 (14.1, 16)	-0.69 (-6.69, 6)	0.7 (0.24, 1.3)	4.60 (1.6, 8.5)	3.91 (-3.85, 8.77)
Group-C	20	20.08 (19, 21)	-0.42 (-5, 5)	0.81 (0.236, 1.45)	4.05 (1.21, 7.29)	3.63 (-2.39, 7.79)
Group-C	25	25.19 (24, 26.1)	-0.76 (-4.4, 4)	1.09 (0.34, 1.8)	4.31 (1.39, 7.17)	3.55 (-0.65, 10.67)
Group-E	30	29.9 (28.9, 31)	0.33 (-3.33, 3.67)	0.78 (0.23, 1.4)	2.60 (0.77, 4.67)	2.93 (-1.98, 6.78)
Group-F	150	150.08 (148, 152)	-0.05 (-1.33,1.33)	1.4 (0.245, 3.2)	0.93 (0.16, 2.12)	0.88 (-1.04, 2.68)

Figure 1. Graph for net percent errors in administered activities of RAI-131 for all groups of patients.

for diagnostic procedures [17] and $\pm 5\%$ for the rapeutic procedures as per AAPM report no. 181 [18,19]. However, some capacity for improvement is present in every clinical hospital for dose optimization [20]. Therefore, this type of study is important for improving radiation safety programs. It is very clear from Table 1 and Figure 1, that the net percent error in administered activities of RAI-131 decreases as the values of prescribed activities increase and vice versa. This percent decrease depends upon the volume of the activities, types of syringes, and human error or lack of experience of technicians in taking measurements. In this study, same type of syringes were used for measurements of RAI-131 activities. It is also worth mentioning that a smaller fraction of residual activities in the syringes were obtained for greater activities and vice versa. The reason is that almost same amount of activity remains in syringes' needles for all RAI-131 activities. The percent errors in the measurements are due to human error, negligence, and inexperience of the technicians, which need to be minimized by proper training [20] and vigilant supervision. The net percent errors in administered activities should be minimized by proper exercise, training, steady supervision, and carefulness of technician to ensure optimum dose delivery to patients, best quality of images, less radioactive wastes, and less financial burden.

Conclusion

This study concludes that patients receive on average 6.73%, 3.91%, 3.63 %, 3.55 %, 2.93 %, and 0.88 % less than the prescribed activities of 3 mCi, 15 mCi, 20 mCi, 25 mCi, 30 mCi, and 150 mCi, respectively. This percent decrease in RAI-131 activity is not alarming in our setup but still needs to be adjusted for the sake of improvement to ensure the best quality images and optimum dose

delivery in RAI-131 therapy through proper training and vigilance supervision. This study also favors that a soft gel capsule of RAI-131 should be provided instead of its liquid form because some risk factors such as vaporization, greater wastes, and spillage are associated with the liquid form of RAI-131.

List of Abbreviations

AV Actual value E Error

MV Measured value RAI-131 Radioiodine-131

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this article.

Funding

None.

Consent to participate

Not applicable.

Ethical approval

Not applicable.

Author details

Javaid Ali^{1*}, Shoab Shah², Abdul Samad¹, Imadullah Tariq¹, Ghufran Biradar², Muhammad Sohail³, Irum Naz¹, Attia Gul⁴, Riffat Wadho¹, Israr Ahmad¹

- 1. Larkana Institute of Nuclear Medicine & Radiotherapy (LINAR) cancer hospital, Larkana, Sindh, Pakistan
- 2. Swat Institute of Nuclear Medicine, Oncology & Radiotherapy (SINOR) cancer hospital, Swat, KPK, Pakistan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China

 Institute of Nuclear Medicine, Oncology & Radiotherapy (INOR) hospital, Abbottabad, KPK, Pakistan

References

- Padda IS, Nguyen M. Radioactive iodine therapy. Treasure Island, FL: StatPearls Publishing; 2021.
- Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, et al. EANM dosimetry committee series on standard operational procedures for pre-therapeutic dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases. Eur J Nucl Med Mol Imaging. 2013;40(7):1126–34.
- Ali J, Khan AU, Ali S. Theoretical comparison of absorbed dose estimation using dose commitment formula and medical internal radiation dose in radioactive iodine-131 therapy. Pak J Nucl Med. 2020;10(1):1–4. https://doi. org/10.24911/PJNMed.175-1536901517
- Ali J, Khan AU, Khan AU, Khan K. Radiation protection management of radioactive corpse given high dose radioiodine-131 therapy: muslim perspectives. Pak J Nucl Med. 2019;9(1). https://doi.org/10.24911/PJNMed.175-1550562618
- Yavuz S, Puckett Y. Iodine-131 uptake study. Treasure Island, FL: StatPearls Publishing; 2020. https://doi. org/10.1386/fm_00090_7
- Stokkel MP, Junak DH, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging. 2010;37(11):2218– 28. https://doi.org/10.1007/s00259-010-1536-8
- Changlai SP, Changlai T, Chen CY. Using γ-camera to evaluate the *in vivo* biodistributions and internal medical dosimetries of iodine-131 in thyroidectomy patients. London, UK: IntechOpen.
- John E. Relationship between TSH level and effective halflife of I-131 in differentiated thyroid cancer patients. J Cell Sci Ther. 2011.
- Pelletier-Galarneau M, Martineau P, Klein R, Henderson M, Zuckier LS. Reproducibility of radioactive iodine uptake (RAIU) measurements. J Appl Clin Med Phys. 2018;19(1):239–42. https://doi.org/10.1002/ acm2.12217
- Mushtaq A, ur Rehman T, Mansur MS, Jehangir M. Adsorption of 99mTc-radiopharmaceuticals onto injection vials and syringes. J Nucl Med Technol. 2008;36(2):91–4. https://doi.org/10.2967/jnmt.107.048561

- Alabarse FG, Xavier AM, Magalhães MH, Guerrero JS. Solid radioactive waste: evaluation of residual activity in nuclear medicine services. In 2009 International Nuclear Atlantic Conference - INAC 2009, Rio de Janeiro, Brazil; 2009.
- Kvaternik H, Gatterer J, Plhak E, Schwarzgruber JF, Aigner RM. Systematic assessment of the adsorption of 99mTc-radiopharmaceuticals onto plastic syringes. J Nucl Med Technol. 2020;48(2):168–73. https://doi. org/10.2967/jnmt.119.235432
- Swanson TN, Troung DT, Paulsen A, Hruska CB, O'Connor MK. Adsorption of 99mTc-sestamibi onto plastic syringes: evaluation of factors affecting the degree of adsorption and their impact on clinical studies. J Nucl Med Technol. 2013;41(4):247–52. https://doi.org/10.2967/jnmt.113.132159
- 14. Keskintepe D, Özer AY. Residual radioactivity in the syringes used in injection of radiopharmaceuticals and factors affecting the amount of residual radioactivity. FABAD J Pharm Sci. 2005;30(4):176.
- Bartosch R, Granegger S, Sinzinger H. Adsorption of technetium-99m tetrofosmin and technetium-99m furifosmin on plastic syringes. Eur J Nucl Med. 1998;25(9):1333–5. https://doi.org/10.1007/s002590050304
- Chhetri KB. Computation of errors and their analysis on physics experiments. Him Phys. 2012;3:78–86. https:// doi.org/10.3126/hj.v3i0.7312
- Lützen U, Zhao Y, Marx M, Imme T, Assam I, Siebert FA, et al. Effective method of measuring the radioactivity of-capsule prior to radioiodine therapy with significant reduction of the radiation exposure to the medical staff. J Appl Clin Med Phys. 2016;17(4):59–72. https://doi.org/10.1120/jacmp.v17i4.5942
- Carey J, Byrne P, DeWerd L, Lieto R, Petry N. AAPM report no. 181: the selection, use, calibration, and quality assurance of radionuclide calibrators used in nuclear medicine. College Park, MD: AAPM; 2012.
- Zuhayra M, Helm A, Ranjan J, Jüptner M, Zhao Y, Marx M, et al. A simple, reliable and accurate approach for assessing [131I]-capsule activity leading to significant reduction of radiation exposure of medical staff during radioiodine therapy. Phys Med. 2022;96:157–65. https://doi.org/10.1016/j.ejmp.2022.03.009
- World Health Organization. Radiation protection and safety in medical uses of ionizing radiation. Specific safety guide. Geneva, Switzerland: World Health Organization; 2018.