SHORT COMMUNICATION

Clinical utility of BRAF and pTERT mutations in precision management of papillary thyroid cancer

Hamid Shabbir^{1*}, Muhammad Babar Imran², Muhammad Naeem²

Pakistan Journal of Nuclear Medicine

Volume 13(1):08–12 https://doi.org/10.24911/PJNMed.175-1672931077

This is an open access article distributed in accordance with the Creative Commons Attribution (CC BY 4.0) license: https://creativecommons.org/licenses/by/4.0/) which permits any use, Share — copy and redistribute the material in any medium or format, Adapt — remix, transform, and build upon the material for any purpose, as long as the authors and the original source are properly cited. © The Author(s) 2023

Pakistan Journal of Nuclear Medicine is the official journal of Pakistan Society of Nuclear Medicine

ABSTRACT

Papillary thyroid cancer is the most prevalent and indolent thyroid cancer, but still, around 20% of cases will develop regional recurrence or distant metastasis. Isolated or coexistent BRAF V600E and telomerase reverse transcriptase promotor (pTERT) mutations in thyroid cancer are associated with poor clinical outcomes. The prior knowledge of BRAF V600E and pTERT mutation may help to identify the cases that may recur or become refractory to standard radioactive iodine treatment. Such cases could be treated initially with complete disease eradication through extensive surgery followed by maximum permissible high-dose radioactive I-131 ablation and vigilant follow-up. Conventional risk assessment coupled with genotype-based risk assessment can help in the precise management of aggressive thyroid cancers.

Keywords: BRAF, TERT, thyroid cancer, precision management, molecular.

Received: 05 January 2023 Accepted: 27 April 2023

Address for correspondence: Hamid Shabbir

*Cancer Genomics Lab, PINUM Cancer Hospital, Faisalabad, Pakistan.

Email: hamid_sadi2002@yahoo.com

Full list of author information is available at the end of the article.

Introduction

Thyroid cancer is considered indolent cancer but still, around 20% of cases will develop regional recurrence or distant metastasis [1]. BRAF V600E is the most prevalent mutation in papillary thyroid cancer (PTC) (40%-80%) and the risk of structural disease recurrence is around 28% [2,3]. However, isolated BRAF V600E mutation cannot be used as an independent prognostic biomarker for risk stratification as it loses significance after adjustment with other clinicopathological prognostic factors. Rather it could be used to identify the most aggressive phenotype within an assigned risk group [4].

Telomerase Reverse Transcriptase Promotor (pTERT) mutations have emerged as a potential marker for prognostication and management in thyroid cancers [5]. The prevalence of pTERT mutations in differentiated thyroid cancer (DTC) is about 11% and they are more common in poorly differentiated thyroid carcinoma and anaplastic thyroid cancer (40%-43%) [6]. These mutations are associated with disease aggressiveness and decrease 10-year survival in DTC (66% vs. 99%) [7]. The risk of structural disease recurrence is about 47.5% after initial treatment which leads to increased mortality [8]. American Thyroid Association guidelines 2015 have included pTERT mutations as an independent prognostic factor for high-risk groups in PTC >1 cm [9].

pTERT mutations can exist alone or in combination with BRAF V600E. The prevalence of concomitant BRAF and pTERT mutations in PTC is around 7.7% [10]. The risk of recurrence increases to 68% in cases harboring a genetic duet of BRAF V600E and pTERT mutation [8]. Coexistent BRAF V600E and pTERT mutations are a strong predictor of recurrence, radioactive iodine (RAI) avidity loss, and mortality; and can be used effectively for the management and prognostication of thyroid cancer. In clinical trials, BRAF V600E mutation alone has demonstrated a sensitivity of 84.2% and specificity of 94.4% to predict loss of RAI avidity and can be used as an independent RAI avidity biomarker in primary lesions[11,12]. Remarkably, sensitivity increases to 97.4% for RAI avidity loss in cases harboring genetic duet of BRAF V600E and pTERT mutations[13]. Genetic biomarkers could be placed in the following order to signify their prognostic importance:

pTERT + BRAF V600E > pTERT > BRAF V600E [14].

Clinical utility of BRAF and pTERT mutation

The use of genetic biomarkers is not indiscriminative, rather it should be used cautiously.

Molecular markers as "Tiebreaker" for risk stratification

Genetic information can play a "Third Umpire Role" when a clinician doubts conventional clinicopathological risk assessment for treatment planning of thyroid cancer [15].

Value of negative prognostic test (BRAF + pTERT)

BRAF V600E and pTERT mutations in thyroid cancer are associated with poor clinical outcomes [16]. In the absence of BRAF and pTERT mutations, cancer-specific mortality in PTC is around 0.6% which increases to 22.7% when BRAF and pTERT mutations are coexistent [17]. In this context, the high negative predictive value of the molecular test for poor prognosis of PTC makes the negative test equally valuable.

Molecular markers in the management of clinically aggressive DTC

BRAF V600E and pTERT mutations are also gaining importance in the management of clinically aggressive DTC having an extrathyroidal extension, lymph node, and distant metastasis. As the risk of recurrence is high in these cases, therefore they are treated aggressively in surgical and nuclear medicine premises. Despite the aggressive approach, response to treatment is not uniform and a significant number of cases experience disease recurrence [18]. TERT mutations alone or in combination with BRAF V600E are associated with increased mortality, disease aggressiveness, and reduced RAI avidity [17]. The prior knowledge of BRAF V600E and pTERT mutation may help to identify the cases that may recur or become refractory to standard treatment. Such cases could be treated initially with complete disease eradication through extensive surgery followed by maximum permissible high-dose RAI ablation and vigilant follow-up.

Molecular markers in the management of solitary intra-thyroidal PTC (SI-PTC)

BRAF and TERT mutations analysis may help in decision-making to carry out lobectomy versus total thyroidectomy in SI-PTC. The risk of recurrence in mutant SI-PTC with size >2 cm is around 20%-30% as compared to 2%-3% in wild-type matched size SI-PTC. Remarkably, the risk of recurrence stays the same (2%-3%) for wild-type SI-PTC >4 cm. The mutant SI-PTC of size 2-4 cm constitutes 8.3% of total cases that need to be treated aggressively with total thyroidectomy [19]. All cases with SI-PTC having a size <2 cm could be managed safely with lobectomy irrespective of genetic status. It is also reasonable to carry out lobectomy in wild-type SI-PTC >4 cm. In this way, the vast majority of SI-PTC cases could be treated with lobectomy alone using molecular status [15].

Molecular markers in the management of papillary thyroid microcarcinoma (PTMC)

Although surgical treatment of clinically aggressive PTMC is widely accepted, however, there is debate on surgical treatment versus non-surgical active surveillance in clinically low-risk PTMC [20]. There is no reliable clinical feature that can differentiate the fraction of PTMC destined to be aggressive. Molecular biomarkers like BRAF and TERT may be helpful to isolate aggressive PTMC phenotype. Active surveillance seems to be a reasonable option in clinically low-risk PTMC with a wildtype molecular profile. The presence of BRAF or pTERT mutations alone or in combination warrants cautious long-term surveillance and may require surgical intervention [21,22]. The presence of BRAF mutations confers a growth advantage to cells and may drive PTMC to grow to the size of PTC. The growing PTMC nodules (>3 mm change) that could trigger surgery otherwise could be kept under surveillance with BRAF wild-type PTMC. The growing PTMC-carrying genetic duet of BRAF V600E and pTERT mutations are more likely to be aggressive and could be managed by total thyroidectomy [15].

Molecular markers in the early appraisal of radioiodine refractory thyroid cancer

BRAF V600E mutations reduce the expression of sodium-iodide symporter (NIS) via HDAC8 and DNMT3 genes-mediated epigenetic changes [23,24]. It further enhances the expression of mutated TERT through FOSactivated GA-binding protein subunit beta (GABPB)/ GABPB complex formation [25]. Though TERT-expressed cells achieve immortality, their membrane becomes too fragile to hold NIS after successive cell division due to the production of reactive oxygen species. The cells become poorly differentiated and refractory to RAI. The presence of BRAF V600E mutation reduces the expression of NIS and increases the expression of mutated pTERT leading to synergism in the working of both genes [26]. The presence of BRAFV600 mutations can be used as an independent RAI avidity marker in PTC. The genetic duet of BRAF and pTERT mutations predicts RAI avidity loss with an almost sensitivity of 97.4%. The early appraisal of refractory status may help to eliminate the disease completely on the surgical floor followed by high-dose RAI ablation before the cell achieves more refractory genetic signatures [4,17].

Molecular markers for selection of kinase inhibitors

The use of tyrosine kinase inhibitors in thyroid cancer is not curative, rather its purpose is to achieve progression-free survival. Currently, lenvatinib and sorafenib (pan kinase receptor inhibitor) are recommended as first-line treatment options either in advanced or metastatic RAI-refractory

DTC *irrespective of genetic status*. However, Lenvatinib is considered superior to sorafenib due to better progression-free survival and disease control rate [27,28]. Cabozantinib is a recently approved 2nd line multi-kinase receptor inhibitor in patients unresponsive or intolerable to sorafenib or lenvatinib [29]. The prolonged use of multi kinase inhibitors (MKI), is associated with cost toxicity and adverse events. Recently Food and Drug Administration has also granted accelerated approval to dabrafenib and trametinib in BRAF V600E mutated metastatic solid tumors having no alternative option [30].

Re-differentiation therapies- back to basics

The current focus is on the development of re-differentiation therapies that might interrupt or delay the use of MKIs. Selumetinib (MEK inhibitor) has shown unsatisfactory results to induce re-differentiation in BRAFV600 mutated phenotype [31]. The double inhibition of the mitogen-activated protein kinase (MAPK) signaling pathway with trametinib (MEK inhibitor) and Dabrafenib in this group is more effective to induce re-differentiation as appeared in preliminary small series clinical trials. In the case of BRAF wild-type disease, re-differentiation with MEK inhibitors alone might be sufficient [32]. The induction of re-differentiation by BRAF V600 mutation-specific inhibitors (dabrafenib and vemurafenib) in the BRAF-mutated group followed by radioiodine treatment has also shown promising results [33,34]. Large studies in the future are needed to compare the re-differentiation efficacy of dabrafinib alone or dabrafinib + trametinib in BRAF V600E mutated group.

A number of clinical trials are underway to check the efficacy and safety of drugs targeting the MAPK signaling pathways to better define re-differentiation therapies for RAI-R thyroid cancers. In the next 5 years, we might see re-differentiation therapies and subsequent RAI treatment prior to MKIs as an effective option if proven successful.

Currently, the success of re-differentiation therapies is limited to partial response or stable disease and partial response is approximately 22% (5%-50%) across different studies [32-37]. We might need to explore the potential negative role of other genetic biomarkers (like pTERT)-hindering the incorporation of radioiodine into cell membranes that might improve our selection of patients. In addition, answers regarding the time of re-differentiation therapy, duration of MKIs, RAI dose, patient selection pre-requisites and overall survival are still awaited.

Conclusion

 All apparently clinically aggressive DTC should be tested for BRAF V600E and pTERT mutations preferably prior to surgery or immediately after surgery to isolate the most aggressive or RAI refractory phenotype out of the group. That will help to complete disease eradication at an early stage.

- All SI-PTC of size >2 cm should be tested for BRAF and TERT mutations to decide between lobectomy or total thyroidectomy.
- All growing PTMC should be tested when one is indecisive between active surveillance or lobectomy
- A negative BRAF + pTERT mutations test is equally valuable and important for prognostication.
- Conventional risk assessment followed by genotype-based risk assessment can help in the precision management of aggressive thyroid cancer.
- Genotype-guided MAPK inhibition has the potential to decide on re-differentiation therapies for unresectable RAI-R thyroid cancer and to delay MKI treatment.

List of Abbreviations

BRAF RAS activated fibroblast (isoform B)
DTC Differentiated thyroid cancer

FOS Fos proto-oncogene, AP-1 transcription

factor subunit

HDAC8 Histone deacetylase 8

MEK Mitogen-activated extracellular kinase

MKI Multi kinase inhibitor
NIS Sodium iodine symporter
PTC Papillary thyroid cancer

Promotor of telomerase reverse transcriptase

PTMC Papillary thyroid microcarcinoma

RAI Radioactive iodine
SI-PTC Solitary intra thyroidal PTC

Conflict of interest

There is no conflict of interest for this article.

Funding

pTERT

There is no funding for this article.

Author details

Hamid Shabbir¹, Muhammad Babar Imran², Muhammad Naeem² Cancer Genomics Lab, PINUM Cancer Hospital, Faisalabad, Pakistan

Department of Nuclear Medicine, PINUM Cancer Hospital, Faisalabad, Pakistan

References

- Capdevila J, Galofré JC, Grande E, Zafón Llopis C, Ramón Y, Cajal Asensio T, et al. Consensus on the management of advanced radioactive iodine-refractory differentiated thyroid cancer on behalf of the Spanish society of endocrinology thyroid cancer working group (GTSEEN) and Spanish rare cancer working group (GETHI). Clin Transl Oncol. 2017;19(3):279–87. https://doi.org/10.1007/ s12094-016-1554-5
- Jung CK, Im SY, Kang YJ, Lee H, Jung ES, Kang CS, et al. Mutational patterns and novel mutations of the BRAF gene in a large cohort of Korean patients with papillary thyroid carcinoma. Thyroid. 2012;22(8):791–7. https:// doi.org/10.1089/thy.2011.0123
- 3. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, et al. Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol. 2015;33(1):42– 50. https://doi.org/10.1200/JCO.2014.56.8253

- Chung JH. BRAF and TERT promoter mutations: clinical application in thyroid cancer. Endocr J. 2020;67(6):577– 84. https://doi.org/10.1507/endocrj.EJ20-0063
- Vuong HG, Altibi AM, Duong UN, Hassell L. Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-a meta-analysis. Clin Endocrinol (Oxf). 2017;87(5):411–7. https://doi. org/10.1111/cen.13413
- Alzahrani AS, Alsaadi R, Murugan AK, Sadiq BB. TERT promoter mutations in thyroid cancer. Horm Cancer. 2016;7(3):165–77. https://doi.org/10.1007/ s12672-016-0256-3
- Kim TH, Kim YE, Ahn S, Kim JY, Ki CS, Oh YL, et al. TERT promoter mutations and long-term survival in patients with thyroid cancer. Endocr Relat Cancer. 2016;23(10):813–23. https://doi.org/10.1530/ERC-16-0219
- Xing M, Liu R, Liu X, Murugan AK, Zhu G, Zeiger MA, et al. BRAF V600E and TERT promoter mutations cooperatively identify the most aggressive papillary thyroid cancer with highest recurrence. J Clin Oncol. 2014;32(25):2718–26. https://doi.org/10.1200/JCO.2014.55.5094
- Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American thyroid association management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American thyroid association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid. 2016;26(1). https://doi.org/10.1089/thy.2015.0020
- Liu R, Xing M. TERT promoter mutations in thyroid cancer. Endocr Relat Cancer. 2016;23(3):R143–55. https://doi. org/10.1530/ERC-15-0533
- Domínguez Ayala M, Expósito Rodríguez A, Bilbao González A, Mínguez Gabiña P, Gutiérrez Rodríguez T, Rodeño Ortiz de Zarate E, et al. BRAF V600E mutation in papillary thyroid cancer and its effect on postoperative radioiodine (131I) therapy: should we modify our therapeutic strategy? Cir Esp (Engl Ed). 2018;96(5):276–82. https://doi.org/10.1016/j.cireng.2018.05.010
- Yang K, Wang H, Liang Z, Liang J, Li F, Lin Y. BRAFV600E mutation associated with non-radioiodine-avid status in distant metastatic papillary thyroid carcinoma. Clin Nucl Med. 2014;39(8):675–9. https://doi.org/10.1097/ RLU.000000000000000498
- Liu J, Liu R, Shen X, Zhu G, Li B, Xing M. The genetic duet of BRAF V600E and TERT promoter mutations robustly predicts loss of radioiodine avidity in recurrent papillary thyroid cancer. J Nucl Med. 2020;61(2):177–82. https:// doi.org/10.2967/jnumed.119.227652
- Zhao L, Wang L, Jia X, Hu X, Pang P, Zhao S, et al. The coexistence of genetic mutations in thyroid carcinoma predicts histopathological factors associated with a poor prognosis: a systematic review and network meta-analysis. Front Oncol. 2020;10:540238. https://doi.org/10.3389/fonc.2020.540238
- Xing M. Genetic-guided risk assessment and management of thyroid cancer. Endocrinol Metab Clin North Am. 2019;48(1):109–24. https://doi.org/10.1016/j.ecl.2018.11.007
- 16. Jin L, Chen E, Dong S, Cai Y, Zhang X, Zhou Y, et al. BRAF and TERT promoter mutations in the aggressiveness of papillary thyroid carcinoma: a study of 653 patients. Oncotarget. 2016;7(14):18346–55. https://doi.org/10.18632/oncotarget.7811
- 17. Liu R, Bishop J, Zhu G, Zhang T, Ladenson PW, Xing M. Mortality risk stratification by combining BRAF V600E and TERT promoter mutations in papillary thyroid cancer

- genetic duet of BRAF and TERT promoter mutations in thyroid cancer mortality. JAMA Oncol. 2017;3(2):202–8. https://doi.org/10.1001/jamaoncol.2016.3288
- 18. Tuttle RM, Tala H, Shah J, Leboeuf R, Ghossein R, Gonen M, et al. Estimating risk of recurrence in differentiated thyroid cancer after total thyroidectomy and radioactive iodine remnant ablation: using response to therapy variables to modify the initial risk estimates predicted by the new American Thyroid Association staging system. Thyroid. 2010;20(12):1341–9. https://doi.org/10.1089/thy.2010.0178
- Huang Y, Qu S, Zhu G, Wang F, Liu R, Shen X, et al. BRAF V600E mutation-assisted risk stratification of solitary intrathyroidal papillary thyroid cancer for precision treatment. J Natl Cancer Inst. 2018;110(4):362–70. https:// doi.org/10.1093/jnci/djx227
- Pitoia F, Smulever A. Active surveillance in low risk papillary thyroid carcinoma. World J Clin Oncol. 2020;11(6):320– 36. https://doi.org/10.5306/wjco.v11.i6.320
- Parvathareddy SK, Siraj AK, Iqbal K, Qadri Z, Ahmed SO, Al-Rasheed M, et al. TERT promoter mutations are an independent predictor of distant metastasis in Middle Eastern papillary thyroid microcarcinoma. Front Endocrinol (Lausanne). 2022;13:808298. https://doi.org/10.3389/fendo.2022.808298
- 22. Silver JA, Bogatchenko M, Pusztaszeri M, Forest VI, Hier MP, Yang JW, et al. BRAF V600E mutation is associated with aggressive features in papillary thyroid carcinomas ≤ 1.5 cm. J Otolaryngol Head Neck Surg. 2021;50(1):63. https://doi.org/10.1186/s40463-021-00543-9
- Zafon C, Gil J, Pérez-González B, Jordà M. DNA methylation in thyroid cancer. Endocr Relat Cancer. 2019;26(7):R415– 39. https://doi.org/10.1530/ERC-19-0093
- 24. Zhang Z, Liu D, Murugan AK, Liu Z, Xing M. Histone deacetylation of NIS promoter underlies BRAF V600E-promoted NIS silencing in thyroid cancer. Endocr Relat Cancer. 2014;21(2):161–73. https://doi.org/10.1530/ERC-13-0399
- Liu R, Zhang T, Zhu G, Xing M. Regulation of mutant TERT by BRAF V600E/MAP kinase pathway through FOS/ GABP in human cancer. Nat Commun. 2018. https://doi. org/10.1038/s41467-018-03033-1
- Song YS, Yoo SK, Kim HH, Jung G, Oh AR, Cha JY, et al. Interaction of BRAF-induced ETS factors with mutant TERT promoter in papillary thyroid cancer. Endocr Relat Cancer. 2019;26(6):629–41. https://doi.org/10.1530/ERC-17-0562
- Brose MS, Nutting CM, Jarzab B, Elisei R, Siena S, Bastholt L, et al. Sorafenib in radioactive iodine-refractory, locally advanced or metastatic differentiated thyroid cancer: a randomised, double-blind, phase 3 trial. Lancet. 2014;384(9940):319–28. https://doi.org/10.1016/S0140-6736(14)60421-9
- Schlumberger M, Tahara M, Wirth LJ, Robinson B, Brose MS, Elisei R, et al. Lenvatinib versus placebo in radioiodine-refractory thyroid cancer. N Engl J Med. 2015;372(7):621– 30. https://doi.org/10.1056/NEJMoa1406470
- Brose MS, Robinson BG, Sherman SI, Jarzab B, Lin CC, Vaisman F, et al. Cabozantinib for previously treated radioiodine-refractory differentiated thyroid cancer: updated results from the phase 3 COSMIC-311 trial. Cancer. 2022;128(24):4203–12. https://doi.org/10.1002/ cncr.34493
- Subbiah V, Kreitman RJ, Wainberg ZA, Gazzah A, Lassen U, Stein A, et al. Dabrafenib plus trametinib in BRAFV600Emutated rare cancers: the phase 2 ROAR trial. Nat Med. 2023;29(5):1103–12. https://doi.org/10.1038/ s41591-023-02321-8

- Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med. 2013;368(7):623– 32. https://doi.org/10.1056/NEJMoa1209288
- Weber M, Kersting D, Riemann B, Brandenburg T, Führer-Sakel D, Grünwald F, et al. Enhancing radioiodine incorporation into radioiodine-refractory thyroid cancer with MAPK inhibition (ERRITI): a single-center prospective two-arm study. Clin Cancer Res. 2022;28(19):4194–202. https://doi.org/10.1158/1078-0432.CCR-22-0437
- Rothenberg SM, McFadden DG, Palmer EL, Daniels GH, Wirth LJ. Redifferentiation of iodine-refractory BRAF V600E-mutant metastatic papillary thyroid cancer with dabrafenib. Clin Cancer Res. 2015;21(5):1028–35. https:// doi.org/10.1158/1078-0432.CCR-14-2915
- Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib redifferentiation of BRAF mutant, Rai-refractory thyroid cancers. J Clin Endocrinol Metab. 2019;104(5):1417–28. https://doi.org/10.1210/ jc.2018-01478

- Jaber T, Waguespack SG, Cabanillas ME, Elbanan M, Vu T, Dadu R, et al. Targeted therapy in advanced thyroid cancer to resensitize tumors to radioactive iodine. J Clin Endocrinol Metab. 2018;103(10):3698–705. https://doi.org/10.1210/jc.2018-00612
- Iravani A, Solomon B, Pattison DA, Jackson P, Ravi Kumar A, Kong G, et al. Mitogen-activated protein kinase pathway inhibition for redifferentiation of radioiodine refractory differentiated thyroid cancer: an evolving protocol. Thyroid. 2019;29(11):1634–45. https://doi.org/10.1089/ thy.2019.0143
- 37. Leboulleux S, Cao CD, Zerdoud S, Attard M, Bournaud C, Benisvy D, et al. MERAIODE: a redifferentiation phase II trial with trametinib and dabrafenib followed by radioactive iodine administration for metastatic radioactive iodine refractory differentiated thyroid cancer patients with a BRAFV600E mutation (NCT 03244956). J Endocr Soc. 2021;5(Suppl 1):A876. https://doi.org/10.1210/jendso/bvab048.1789